Chapter 7 Design-for-Test

Arnaud Virazel

<u>virazel@lirmm.fr</u>

Why?

- To ensure that a circuit (or system) is testable (technical and financial aspects)
- Test cost
 - Automatic Test Pattern Generation
 - Fault simulation
 - Tester (ATE), test equipment (investment)
 - Test time (effective time on the tester)

Objectives

Reduce the time to market

- by making the test vector production phase easier (or even automated)
- Reduce the test cost
 - by generating smaller test sets
- Improve the quality of the test
 - by increasing the fault coverage

DfT Techniques

Ad-hoc techniques

- common sense rules from experience
- Structured techniques
 - facilitate access to internal memorization points
 - standard for testing boards and systems
 - can be automated

Ad-hoc Techniques

- Initialization of memory points
- Logic partitioning
- Clock isolation
- Test point insertion
- Facilitate access to buses
- Make the circuits easily initializable
- Polarize the tri-state buses
- Avoid asynchronous circuits

Logic Partitioning

- CPU time for test pattern generation about Gⁿ order (G number of gates and 2 < n < 3)
- Divide and conquer approach
 - p partitions of G / p gates
 - Ex: original circuit with G = 10000
 - \Rightarrow CPU time: G² = 10⁸
 - 2 partitions G_1 and G_2 of 5000 gates
 - \Rightarrow CPU time: $G_1^2 + G_2^2 = 5.10^7$

 \Rightarrow 2 times shorter

- gain of pⁿ⁻¹ times (p x (G/p)ⁿ compared to Gⁿ)
- partition into logically independent parts

Logic Circuit Partitioning

Critical Problem

- CLK and data generated by the same signal
- Sequencing is function of logics A and B delays (variability issue)
- Unpredictable results

Counter Bypass

- Counters and frequency dividers increase sequential complexity
- Ineffective for ATPGs and testers
- Solution: multiplex the output with a signal that is easier to control by the ATE

Test Point Insertion

- Improved controllability and observability
 - reduction in the number of vectors
 - improved diagnosis
- Increase in the number of I / O
 - additional pads

Original Circuit

Control at 0 and Observability

Control at 0 and 1

Where to Inject?

- Controllability
 - inputs of sub-circuits that are difficult to control
 - initialization inputs of storage element
 - control of three states
 - Control of multiplexers
 - enable and R / W of memories
 - return loops
- Observability
 - outputs of sub-circuits that are difficult to observe
 - inaccessible control lines
 - serial output of shift registers
 - clock lines
 - return loops

Objectives

- Make all flip-flops fully controllable and observable
- Make the sequential circuit testing "equivalent" to combinational one

Sequential Circuit

Scan Path Insertion

Normal functioning

- Flip-flop modification (additional mux)
- Creation of a shift register (scan chain) allowing full observability and controllability of all storage nodes

Scan Test Procedure

- 0) Test of the scan chain (sequence of k times 01)
- 1) Place the circuit in test mode (N / T = 1)
- 2) Shift-in the test vector $\{y1, ..., yk\}$ inside the scan path
- 3) Set the corresponding test values on the primary inputs Xi
- 4) Place the circuit in functional mode (N / T = 0) and after a time necessary for the stabilization of the outputs of the combinatorial part, check the different outputs Zk

5) Apply a clock pulse to capture the test responses into the scan chain

6) Place the circuit in test mode (N / T = 1) and the contents of the shift register via the output Zm and compare it with the expected results (shift-in at the same time the next test vector)

Drawbacks and Solutions

- Area overhead ("Scan" flip-flops, routing, pins)
- Degradation of the nominal operating speed (multiplexers)
- Test time duration of test time: (nb-test) x (nb-FF)

- Different Scan techniques
 - Multiple scan -> STUMP
 - Partial scan

- Single Scan chain
 - Reduce number of additional I/O
 - Long test time
 - ATE with a large memory depth

- Multiple Scan chain
 - Reduced test time
 - Reduced ATE memory depth
 - Improved diagnosis
 - Increase in the number of necessary I/O

STUMP Architecture

21

- All memory elements are not included in the chain
- Require an ATPG for sequential circuit
- Problem of the "good choice" of flip-flops to include in the scan chain
- Less area footprint compared to full Scan
- Time performance improvement

Flip-Flop Selection

- Different approaches based on
 - the use of testability measures (less controllable/observable FFs are selected)
 - the generation of test vectors (propagation and justification phases)
 - the structural analysis (reduction of the depth of sequentiality and number of cycles)
 - a mixed use of these different techniques
- Consideration of constraints
 - critical path for example